

# Emerging Challenges and Solutions For Signal Integrity and Jitter Testing For PCle 2.0 @ 5 GT/s

Mike Li, Ph.D.

CTO

Wavecrest







- I. High-speed I/O test review
  - Link architecture evolution
  - Jitter, noise, and signaling
  - BER and interoperability
- II. PCIe 2.0 jitter and signaling test requirements
  - Link architecture overview
  - ◆ Jitter, noise, and BER (JNB) transfer functions
  - JNB and signaling tests (Tx, Rx, and Ref clock)
- III. Test methods meeting requirements
  - Transmitter
  - Receiver
  - PLL
  - Ref clock
- IV. Applications and case studies
  - Compliance test
  - Diagnostic test
- V. Summary and conclusion





#### I: High Speed I/O Test Review







#### **A Serial Data Communication System**





# Phase Jitter Measurement and Reference Clock Used



- Calculating Phase Jitter against a tracking clock (or recovered clock) reduces the amount of Phase Jitter calculated
- The amount of tracking depends on the recovered clock's transfer function of the receiver





### Effect of Clock Recovery On Signal/Jitte











#### Timing Jitter, Amplitude Noise, and BER (JNB)



- Timing jitter and amplitude noise can both cause bit errors to occur
- Bit Error Rate (BER) needs to be 10<sup>-12</sup> or smaller
- Interoperability is merited by jitter, noise, and BER





Timing jitter pdf

Amplitude noise pdf





### Phase, Period, and Cycle-to-Cycle Jitte









#### Law for PDFs: Convolution

Convolution is defined by the following equation:

$$f(x) * g(x) = \int_{-\infty}^{+\infty} f(u)g(x - u)du$$

The Total Jitter PDF is equal to the convolution of RJ PDF with the DJ PDF. This is shown in this equation:

$$f_{TJ}(x) = f_{RJ}(x) * f_{DJ}(x) = \int_{-\infty}^{\infty} f_{RJ}(u) \cdot f_{DJ}(x-u) du$$



### Jitter Separation (I): PDF or BER CDF Domain with TailFits







(a)

(b)

# with Autocorrelation or PSD



- RJ PSD
- PJ PSD
- DDJ (DJ without PJ and BUJ) PSD



#### Jitter PDF, BER CDF, and Eye-Diagram





Relationship of Eye Diagram, TJ PDF and BER CDF



$$BER(t_s) = \frac{1}{2} \left[ \int_{t_s}^{\infty} f_{TOT}(t) dt + \int_{-\infty}^{t_s} f_{TOT}(t - UI) dt \right]$$





#### II: PCle 2.0 Test Requirements

IMPORTANT NOTE: Numbers highlighted in green are from the 0.7 Draft of the PCle 2.0 Specification and are subject to change before the final specification! They are presented for illustrative purposes only.





### PCle 2.0 Link Architecture (Pl or OS Based)



Be certain of the signal you s





### **System Transfer Functions**











### Tx Amplitude Voltage Test Requirements



| Symbol             | Parameter and Definition          | 2.5 GT/s<br>(PCle 1.x)  | 5 GT/s – PCle<br>2.0 Draft 0.7 | Unit |
|--------------------|-----------------------------------|-------------------------|--------------------------------|------|
| VTX-<br>DIFF-PP    | Differential p-p Tx voltage swing | 0.8 (min)<br>1.2 (max)  | 0.8 (min)<br>1.2 (max)         | V    |
| VTX-DE-<br>RATIO - | Tx de-emphasis level              | 3.0 (min)<br>-4.0 (max) | -5.5 (min)<br>-6.5 (max)       | dB   |



#### **De-Emphasis**







Figure 4-414-21: Sample Transmitted Waveform Showing -3.5 dB De-emphasis Around a 0.5 V Common Mode Voltage

De-Emphasis tries to compensate for DDJ of the Channel



#### Tx Jitter/Timing Test Requirements





| Symbol                 | Parameter and Definition                                                      | 2.5 GT/s<br>(PCle 1.x) | 5 GT/s (PCIe 2.0<br>Draft 0.7) | Unit |
|------------------------|-------------------------------------------------------------------------------|------------------------|--------------------------------|------|
| TMIN-<br>PULSE         | Instantaneous pulse width                                                     | Not<br>spec'ed         | 0.9 (min)                      | UI   |
| TTX-<br>EYE            | Transmitter Eye opening (@10 <sup>-12</sup> BER) including all jitter sources | 0.75 (min)             | 0.75 (min)                     | UI   |
| TTX-<br>DJ-DD<br>(max) | Tx deterministic jitter (DJ)                                                  | Not<br>spec'ed         | 0.15 (max)                     | UI   |





#### **Tx PLL Test Requirements**





| Symbol                  | Parameter and Definition           | 2.5 GT/s<br>(PCIe 1.x) | 5 GT/s (PCIe 2.0<br>Draft 0.7) | Unit |
|-------------------------|------------------------------------|------------------------|--------------------------------|------|
| BWTX-<br>PLL            | Maximum Tx PLL<br>Bandwidth (BW)   | 22 (max)               | 16 (max)                       | MHz  |
| BWTX-<br>PLL-LO-<br>3DB | Minimum Tx PLL BW for 3 dB peaking | 3 (min)                | 8 (min) MHz                    | MHz  |
| BWTX-<br>PLL-LO-<br>1DB | Minimum Tx PLL BW for 1 dB peaking | Not spec'ed            | 5 (min)                        | MHz  |
| PKGTX-<br>PLL1          | Tx PLL peaking with 8 MHz min BW   | Not<br>spec'ed         | 3.0 (max)                      | dB   |
| PKGTX-<br>PLL2          | Tx PLL peaking with 5 MHz min BW   | Not<br>spec'ed         | 1.0 (max)                      | dB   |



#### Tx Test Jitter Transfer Function





1st -order HPF of

$$H_3(s) = \frac{s}{s + \omega_3}$$

$$\omega_3 = 2 \pi f_3$$
 where

$$f_3 = 1.0MHz$$





#### Reference Clock Test Requirements





| Symbol                  | Parameter and Definition                                                                       | Min   | Max                   | Unit |
|-------------------------|------------------------------------------------------------------------------------------------|-------|-----------------------|------|
| TPERIOD-<br>ABS         | Averaged instantaneous period (including SSC)                                                  | 9.997 | 10.053                | ns   |
| VIH<br>VIL              | Differential Input High Voltage Differential Input Low Voltage                                 | +150  | -150                  | mV   |
| VRB                     | Ring-back Voltage Margin                                                                       | -100  | +100                  | mV   |
| (dV/dt) <sub>R</sub>    | Rising Edge Rate                                                                               | 0.6   | 4.0                   | V/ns |
| (dV/dt) <sub>F</sub>    | Falling Edge Rate                                                                              | 0.6   | 4.0                   | V/ns |
| $\eta_{DC}$             | Duty Cycle                                                                                     | 40    | 60                    | %    |
| TCLK_RJ                 | Ref clk RMS jitter                                                                             |       | 3.1                   | ps   |
| TSSC-<br>JITTER-CC      | SSC induced jitter that a receiver must track. Relevant only for common clock architecture     |       | 65 ps PP<br>at 33 KHz | ps   |
| TSSC-<br>JITTER-<br>DDC | SSC induced jitter that a receiver must track. Relevant only for data driving PLL architecture |       | 20 ns PP<br>at 33 KHz | ns   |



#### Reference Clock Jitter Transfer Function



$$H(s) = \left[ H_1(s) * e^{-s*t} - \frac{delay}{s} - H_2(s) \right]$$

$$H_{1}(s) = \frac{2s\zeta\omega_{1} + \omega_{1}^{2}}{s^{2} + 2s\zeta\omega_{1} + \omega_{1}^{2}}$$

$$H_2(s) = \frac{2s\zeta\omega_2 + {\omega_2}^2}{s^2 + 2s\zeta\omega_2 + {\omega_2}^2}$$



$$\zeta = 0.54$$

$$H_{1}(s) = \frac{2s\zeta\omega_{1} + \omega_{1}^{2}}{s^{2} + 2s\zeta\omega_{1} + \omega_{1}^{2}}$$

$$Q_{1} = \frac{2*\pi*8.61*10^{6}}{\sqrt{1 + 2\zeta^{2} + \sqrt{(1 + 2\zeta^{2})^{2} + 1}}} Rad/s$$

$$H_{2}(s) = \frac{2s\zeta\omega_{2} + \omega_{2}^{2}}{s^{2} + 2s\zeta\omega_{2} + \omega_{2}^{2}}$$

$$\omega_2 = \frac{2*\pi*4.31*10^6}{\sqrt{1+2\zeta^2+\sqrt{(1+2\zeta^2)^2+1}}} Rad/s$$

$$t_{delay}=12\cdot10^{-9}s$$



#### Rx Amplitude Voltage Test Requirements





| Symbol                        | Parameter and Definition                   | 2.5 GT/s<br>(PCle 1.x)  | 5 GT/s (PCIe 2.0 Draft 0.7) | Unit |
|-------------------------------|--------------------------------------------|-------------------------|-----------------------------|------|
| VRX-<br>DIFF-PP               | Differential p-p Rx voltage swing          | 0.175 (min)<br>1.2 (max | 0.120 (min)<br>1.2 (max)    | V    |
| VRX-<br>MAX-<br>MIN-<br>RATIO | Max to Min pulse voltage on consecutive UI | Not<br>spec'ed          | 5 (max)                     |      |



#### Rx Jitter/Timing Test Requirements



Be certain of the signal you send

| Symbol              | Parameter and Definition                      | 2.5 GT/s<br>(PCle 1.x) | 5 GT/s (PCle 2.0<br>Draft 0.7) | Unit |
|---------------------|-----------------------------------------------|------------------------|--------------------------------|------|
| TRX-EYE             | Receiver Eye opening (@10 <sup>-12</sup> BER) | 0.4 (min)              | 0.4 (min)                      | UI   |
| TRX-DJ-<br>DD (max) | Rx deterministic jitter (DJ)                  | Not<br>spec'ed         | 0.44 (max)                     | UI   |





# III: Example Test Methods Meeting Requirements



## **Example Tx Jitter/Signaling Test Methods**



- Measure clock-to-data jitter
- TJ is measured at BER = 10<sup>-12</sup>





### Example Rx Jitter/Signaling Test Methods



 Create the worst jitter/signaling conditions to stress the Rx and insure that it still meets the 10<sup>-12</sup> BER requirement





### Example Rx Jitter/Signaling Test Method Cont...





### **Example PLL Test Methods**

WAVECREST

Be certain of the signal you s

 One method will measure the PLL jitter variance function to derive the PLL transfer function (*No* need for a stimulus, *in-situ* measurement)





# **Example Reference Clock Jitter Test Methods**



- Step 1: Measure the phase jitter time record, or spectrum, or power spectrum density (PSD)
- Step 2: Apply the required filter function in either time-domain, or frequency-domain
- Step 3: Estimate the RMS value after the filter function.





# IV: Application and Case Study Examples





### Tx Testing (I): Full Swing and De-Emphasis Ey

























| TIMING MEASUREMENTS |                   |            |            |  |  |
|---------------------|-------------------|------------|------------|--|--|
| Quantity            | Specification     | Measured   | Pass/Fail? |  |  |
| UI                  | 199.94ps-200.06ps | 200ps      | PASS       |  |  |
| TtxEye 10e-12       | >0.75UI           | 0.813816UI | PASS       |  |  |
| TtxDjDD             | <0.15UI           | 0.031209UI | PASS       |  |  |
| TtxRj               |                   | 0.011070UI |            |  |  |





#### Tx Testing (II): DJ and TJ, Passing





| TIMING MEASUREMENTS |                   |            |            |  |  |
|---------------------|-------------------|------------|------------|--|--|
| Quantity            | Specification     | Measured   | Pass/Fail? |  |  |
| UI                  | 199.94ps-200.06ps | 200ps      | PASS       |  |  |
| TtxEye 10e-12       | >0.75UI           | 0.824608UI | PASS       |  |  |
| TtxDjDD             | <0.15UI           | 0.076184UI | PASS       |  |  |
| TtxRj               |                   | 0.007086UI |            |  |  |



#### Tx Testing (II): PSD















## Tx Testing (III) DJ and TJ, Failing



| TIMING MEASUREMENTS |                   |            |            |  |  |
|---------------------|-------------------|------------|------------|--|--|
| Quantity            | Specification     | Measured   | Pass/Fail? |  |  |
| UI                  | 199.94ps-200.06ps | 200ps      | PASS       |  |  |
| TtxEye 10e-12       | >0.75UI           | 0.744601UI | FAIL       |  |  |
| TtxDjDD             | <0.15UI           | 0.160213UI | FAIL       |  |  |
| TtxRj               | (                 | 0.006799UI |            |  |  |



#### Tx Testing (III): PSD









# Rx Testing: Compliance Eye-Diagram









#### Rx Testing: DJ and TJ







| TIMING MEASUREMENTS |                   |            |            |  |  |
|---------------------|-------------------|------------|------------|--|--|
| Quantity            | Specification     | Measured   | Pass/Fail? |  |  |
| UI                  | 199.94ps-200.06ps | 200ps      | PASS       |  |  |
| TrxEye 10e-12       | >0.40UI           | 0.478122UI | PASS       |  |  |
| TrxDjDD             | <0.44UI           | 0.284141UI | PASS       |  |  |
| TrxRJ               |                   | 0.016981UI |            |  |  |





# Rx Testing: DDJ SPAN and Histogram







# Rx Testing: PSD











# PLL Testing: 3 dB Frequency and Peaking











# PLL Testing: A 3<sup>rd</sup> Order Case









## **Reference Clock Testing**











# V. Summary and Conclusion

- WAVECREST
- Signal integrity is composed of both Timing Jitter and Amplitude Noise
- Quantifying jitter and noise components is essential
- Understanding different jitter measure types is critical and phase jitter is used for PCI Express
- Transfer function is a must for testing serial links
- DJ/RJ/TJ testing are all critical and required for 5GT/sec
- PLL parameters are critical for PCI Express interoperability test
- Both compliance and diagnostic tests are needed in order to have a full test coverage



# References



- 1. Li, Martwick, Talbot, Wilstrup, 2004, ITC/IEEE paper on PCI Express Jitter, ITC/IEEE 2005 Proceedings
- 2. Advanced Signal Integrity and Jitter Seminar, 2005, Wavecrest <a href="http://www.wavecrest.com/technical/papers.html">http://www.wavecrest.com/technical/papers.html</a>
- 3. PCI Express Jitter white paper (I), 2004: <a href="http://www.pcisig.com/specifications/pciexpress/technical\_library">http://www.pcisig.com/specifications/pciexpress/technical\_library</a>
- 4. PCI Express Jitter and BER white paper (II), 2005: <a href="http://www.pcisig.com/specifications/pciexpress/technical\_library">http://www.pcisig.com/specifications/pciexpress/technical\_library</a>
- 5. PCI Express 1.1 Base Specification, 2005: <a href="http://www.pcisig.com/specifications/pciexpress/base">http://www.pcisig.com/specifications/pciexpress/base</a>
- 6. PCI Express 1.1 CEM Specification, 2005: <a href="http://www.pcisig.com/specifications/pciexpress/base">http://www.pcisig.com/specifications/pciexpress/base</a>
- 7. PCI Express 2.0 Base Specification, Rev 0.7, 2006





# Acknowledgement:

The author would like to thank Brad Hegge and Goutham Mallareddy of Wavecrest for their help in preparing this presentation

Thank you for attending the PCI-SIG Developers Conference 2006.

For more information please go to <a href="https://www.pcisig.com">www.pcisig.com</a>



# Emerging Challenges and Solutions For Signal Integrity and Jitter Testing For PCle 2.0 @ 5 GT/s

Mike Li, Ph.D.

CTO

Wavecrest

